2014 год: каким научным идеям пора в отставку - в Мире <!--if(Актуальные новости)-->- Актуальные новости<!--endif--> - Каталог статей - наука в Томске, и не только
Четверг, 05.12.2024, 04:05
Приветствую Вас Гость | RSS
Главная | Каталог статей | Регистрация | Вход
Россия. Наука. XXI век
Форма входа
Меню сайта

Категории раздела
в Городе [386]
в Стране [167]
в Мире [145]

Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0

Друзья сайта
  • Официальный блог
  • Сообщество uCoz
  • FAQ по системе
  • Инструкции для uCoz




  • Главная » Статьи » Актуальные новости » в Мире

    2014 год: каким научным идеям пора в отставку

    2014 год: каким научным идеям пора в отставку

    Известные ученые составили свой список популярных научных идей, которые потеряли свою актуальность в свете новейших исследований и современных взглядов.

    Материал подготовлен редакцией ИноСМИ специально для раздела РИА Наука >>

    Единообразие и уникальность Вселенной

    Андрей Линде
    Физик-теоретик, Стэнфордский университет. Автор хаотической теории инфляции, лауреат премии благотворительного фонда Мильнера Fundamental Physics Prize за 2012 год в размере 3 млн долларов.

    На протяжении большей части 20-го века в научных кругах господствовала идея о единообразии Вселенной и об уникальности законов физики. Действительно, космологические наблюдения указывали на то, что Вселенная в самом крупном из возможных масштабов почти полностью одинакова, с точностью более чем 1 к 10000.

    Аналогичная ситуация существует в плане уникальности законов физики. Например, мы знали, что масса электрона одинакова повсюду в наблюдаемой части Вселенной, а поэтому было вполне естественно допустить, что она имеет одни и те же значения везде, что это константа природы. Долгое время одна из величайших целей физики состояла в поиске единой теории, объединяющей все фундаментальные взаимосвязи и взаимовлияния, и дающей однозначное объяснение всем известным параметрам физики элементарных частиц.

    Тридцать лет тому назад возможное объяснение единообразия Вселенной было найдено. Главная идея заключалась в том, что наша часть мироздания появилась в результате стремительного расширения пространства, называемого космической инфляцией. Затем расправляются и исчезают все «морщинки» и неоднородности пространства. Вселенная становится невероятно гладкой. Добавьте сюда немного квантовых флуктуаций, растяните их, и получившееся в результате единообразие станет почти идеальным. И появятся галактики.

    Сначала инфляционная теория была немного похожа на экзотический плод живого воображения. Но благодаря полной энтузиазма работе тысяч ученых, многие прогнозы и расчеты из этой теории были подтверждены данными научных наблюдений. А если эта теория верна, у нас, наконец, появляется научное объяснение того, почему мир настолько единообразен.

    Но инфляционная теория ничего не говорит нам о том, что такое единообразие должно распространяться за пределы наблюдаемой части Вселенной. В качестве аналогии предположим, что Вселенная это поверхность большого футбольного мяча, состоящего из черных и белых шестиугольников. Если мы надуем этот мяч, размер каждого черного или белого элемента станет экспоненциально большим. Если увеличение будет достаточно мощным и мяч раздуется до вселенских масштабов, живущие в черной части Вселенной никогда не увидят ее белую часть, и будут считать, что вся Вселенная — черная. Они также будут пытаться найти научное объяснение тому, почему она не может быть никакого другого цвета. А живущие в белой части никогда не увидят черные части и поэтому могут прийти к выводу, что весь мир должен быть белым. Но черные и белые части могут спокойно сосуществовать в инфляционной Вселенной, никак не противореча научным наблюдениям.

    В приведенном выше примере мы говорили о черном и белом. Но в физике количество различных состояний материи (количество «цветов») может быть экспоненциально большим. Наилучшим кандидатом на звание теории всего, что в настоящее время нам известно, является теория струн. Ее можно вполне успешно сформулировать в 10-мерном пространстве-времени (девять пространственных измерений и одно временное). Но мы живем во Вселенной с трехмерным пространством. Где же остальные шесть? Ответ заключается в том, что они компактифицированы, втиснуты в нечто настолько малое, что мы не можем перемещаться в этих направлениях, а поэтому воспринимаем мир трехмерным.

    С самого начала возникновения теории струн физики знали, что существует экспоненциально много различных способов для компактификации этих шести измерений, но нам не было известно, что может помешать взрыву этих компактифицированных измерений. Эта проблема была решена около 10 лет назад, и решение подтвердило прежние ожидания по поводу экспоненциально большого количества возможностей. В некоторых оценках число различных вариантов достигает 10500. И каждый вариант описывает часть Вселенной со своей энергией вакуума и со своими типами материи.

    В рамках инфляционной теории это означает, что наш мир может состоять из невероятного количества экспоненциально больших «вселенных» с 10500 разных типов материи внутри них.

    Пессимист скажет: поскольку мы не видим другие части Вселенной, мы не можем доказать, что такая картина верна. А оптимист может возразить, что и доказать ошибочность такой картины мы не сможем никогда, поскольку ее главное предположение заключается в том, что такие «вселенные» находятся очень далеко от нас. А так как мы знаем, что лучшие теории, разработанные на сегодняшний день, допускают наличие около 10500 разных вселенных, любой, кто скажет, что Вселенная должна иметь одни и те же свойства повсюду, будет вынужден доказывать, что возможна только одна из этих 10500 вселенных.

    Но здесь есть еще кое-что. В нашем мире существует множество странных совпадений. Масса электрона в 2000 раз меньше массы протона. Почему? Если одна из их масс хоть немного изменится, жизнь в известном нам виде будет невозможна. Энергия вакуума в нашей части Вселенной не равна нулю, она имеет неизмеримо малое значение, на много порядков меньше наивных теоретических предположений. Почему? Единственное известное нам объяснение состоит в том, что мы не смогли бы жить в мире с гораздо большей энергией вакуума.

    Соотношение и связь между нашими свойствами и свойствами мироздания называется антропным принципом. Но если бы Вселенная была дана нам в единственном экземпляре, такое соотношение ничем бы нам не помогло. Нам пришлось бы строить догадки и предположения о высших причинах, по которым Вселенная приспособлена к жизни человека. Между тем, в мультивселенной, или во множественной вселенной, состоящей из большого количества частей с разными свойствами, связь между нашими свойствами и свойствами населенной нами части мира вполне логична и понятна.

    Можем ли мы вернуться к старой картине единой Вселенной? Возможно, но для этого надо выполнить три условия. Первое, это создание более совершенной космологической теории. Второе, это создание более совершенной теории фундаментальных взаимосвязей. И третье, это альтернативное объяснение тех чудесных совпадений, которые мы только что обсудили.

    Раса

    Нина Яблонски (Nina Jablonski)
    Биолог-антрополог и палеобиолог, заслуженный профессор антропологии, Университет штата Пенсильвания.

    Понятие расы всегда было довольно скользким и неопределенным. В середине 18-го века европейские естествоиспытатели, такие как Линней, граф де Бюффон и Иоганн Блюменбах, описывали географические группы людей, различающиееся по внешнему виду. Философов Дэвида Юма и Иммануила Канта поражало физическое многообразие человечества. По их мнению, изнуряющая жара, жестокий мороз и солнечный свет разрушают человеческий потенциал. Юм в 1748 году утверждал: «В мире никогда не было цивилизованной нации с цветом кожи иным, кроме белого».

    У Канта была аналогичная точка зрения. Этого философа всю жизнь занимали вопросы человеческого многообразия, и он подробно писал об этом в целой серии статей и очерков, начиная с 1775 года. Кант первым дал названия и определения географическим группам людей, назвав их расами (на немецком Rassen). По мнению Канта, характерными отличиями рас являются цвет кожи, форма волос, форма черепа, другие анатомические черты, а также их способность к соблюдению норм нравственности, к самосовершенствованию и цивилизации. Свои четыре расы Кант выстроил в иерархический порядок, заявив, что только европейская раса способна к самосовершенствованию.

    Почему научный расизм во взглядах Юма и Канта берет верх над логичной и вдумчивой оппозицией в лице фон Гердера и остальных? Канта при жизни признали великим философом, и авторитет мыслителя только окреп, когда в 19-м веке получили широкое распространение его главные философские труды, которые стали читать многие. Некоторые из сторонников Канта соглашались с его расистскими взглядами, некоторые просили за них прощения или — что случалось чаще всего — просто игнорировали их. Другая причина, по которой в конце 18-го и в 19-м веке расистские взгляды одержали верх над антирасистскими, состояла в том, что они в плане экономики были выгодны для трансатлантической работорговли, ставшей основной движущей силой экономического развития Европы. Работорговля подкреплялась идеологиями, умалявшими или отрицавшими гуманность неевропейцев и особенно африканцев. Такие взгляды усиливали популярные в то время новые библейские толкования, авторы которых говорили, что рабство предопределено африканцам свыше. Цвет кожи как самую заметную характеристику расы стали ассоциировать с расплывчатой совокупностью мнений и слухов о врожденных свойствах различных рас. Белый цвет кожи обозначал нравственность, силу характера, а также склонность к цивилизованности. Это превратилось в некий вирус разума. В 19-м и в начале 20-го века получила развитие наука о расах. Биологическая реальность рас нашла подтверждение в виде научных данных нового типа, которые накапливали новые ученые, прежде всего антропологи и генетики. В это время на свет появилась евгеника и ее детище — теория расовой чистоты. С возникновением социал-дарвинизма дальнейшее подкрепление получило представление о превосходстве белой расы и о том, что это часть естественного порядка. То, что все люди являются продуктом сложных генетических смешений, возникающих на протяжении тысячелетий в результате миграции и совместного проживания, не признавали ни исследователи рас, ни многочисленные евгенисты, которые по обе стороны Атлантики ратовали за повышение качества рас.

    В середине 20-го века продолжали появляться многочисленные научные трактаты о расах. Но к 1960-м годам возникли два фактора, способствовавшие закату теории о биологических расах. Первым стало расширение исследований по вопросам физического и генетического многообразия человеческих групп во всем мире, которые проводили многочисленные ученые. Вторым фактором стало растущее влияние движения за гражданские права в Соединенных Штатах Америки и в других странах. Вскоре влиятельные ученые начали осуждать исследования на тему рас, потому что самим расам невозможно было дать научное определение. Ученые искали четкие границы между группами людей, но не находили таковых.

    Несмотря на крупные сдвиги в научной мысли, родственные теории о человеческих расах и о расовой иерархии на основе цвета кожи продолжали занимать прочное место в массовой культуре всю середину 20-го века. Возникшие в результате этого расовые стереотипы оказались мощными и устойчивыми, особенно в США и в ЮАР, где угнетение и эксплуатация темнокожих рабочих стала краеугольным камнем экономического роста.

    После заката науки о расах раса сохранилась как название и как понятие. Но со временем это слово стало обозначать нечто иное. Сегодня многие люди согласны с представлением о том, что они являются членами той или иной расовой группы независимо от того, что говорит о природе расы наука. Коллективное ощущение расовой принадлежности создает мощные социальные связи. Для многих людей, в том числе для многих ученых, раса перестала обозначать биологическую категорию, перейдя в разряд социальной группы. Понятие расы стало более путаным, и ее сегодня воспринимают как смесь общественных категорий класса и этнической принадлежности. Так что раса это не просто социальная конструкция, это подлинный продукт коллективного опыта и ощущений, и люди предпочитают отождествлять себя с той или иной расой.

    Врачи-клиницисты продолжают вести наблюдения за здоровыми и больными людьми, пользуясь старыми расовыми концепциями и категориями типа «белый», «чернокожий», «афроамериканец», «азиат» и так далее. Даже после того, как было доказано, что многие болезни (диабет в зрелом возрасте, алкоголизм, высокое кровяное давление и так далее) имеют очевидные расовые закономерности из-за того, что люди живут в одинаковых условиях окружающей среды, классификация по расовому признаку сохраняется. Применение расовой классификации в эпидемиологических исследованиях всячески отстаивается и даже поощряется. В большинстве случаев понятие расы в медицинских исследованиях оказывается в тупике при изучении недугов, возникающих в силу классовой принадлежности и этнических различий в общественной практике, когда учитывается достаточное количество переменных величин.

    Последняя перестройка понятий о расе возникла из геномики и в основном в рамках биомедицины. То, что в общественном сознании медицинская наука окружена ореолом святости, придает расовой концепции новый вес и значимость. Расовые реалисты выстраивают геномные доказательства, обосновывая твердую биологическую реальность расового различия, а расовые скептики не видят никаких расовых закономерностей. Ясно, что люди видят то, что хотят видеть. Они строят свои научные исследования таким образом, чтобы получился ожидаемый результат. В 2012 году Кэтрин Блисс (Catherine Bliss) весьма убедительно говорила, что на расу сегодня лучше всего смотреть как на систему убеждений, которая «в определенный социально-исторический момент создает постоянство в представлениях и практике».

    Раса сохраняет свои позиции в истории, однако в науке ей уже нет места. Из-за огромной неустойчивости и возможных неверных толкований это понятие как научная концепция стало бесполезным. Создать новый вокабуляр, описывающий человеческое многообразие и пристрастность, будет непросто, однако это необходимо.

    В квантовом мире нет реальности

    Антон Цайлингер (Anton Zeilinger)
    Физик, Венский университет. Научный директор Института квантовой оптики и квантовой информации Австрийской академии наук. Автор книги «Dance of the Photons: From Einstein to Quantum Teleportation» (Танец фотонов. От Эйнштейна до квантовой телепортации).

    Идея, от которой следует отказаться, заключается в том, что в квантовом мире нет реальности. Такая идея могла возникнуть по двум причинам. С одной стороны, поскольку тому или иному физическому свойству не всегда можно приписать точное значение, а с другой, потому что внутри обширного спектра интерпретаций квантовой механики кое-кто предполагает, будто квантовое состояние не объясняет внешнюю реальность и что свойства возникают лишь в мозгу у исследователя, в связи с чем важнейшую роль здесь играет сознание.

    Давайте задумаемся на секунду над знаменитым опытом Юнга (эксперимент с двумя параллельными прорезями). Такие и им подобные опыты проводятся сегодня не только на единичных фотонах и других элементарных частицах типа нейтронов, протонов, электронов и так далее, но и на больших макромолекулах, таких как бакиболы или фуллерены, и даже крупнее. Мы проводим опыты на бакиболах — молекулах С60  или С70. Имеются две прорези, и при соблюдении условий эксперимента мы наблюдаем распределение бакибол за ними с максимальными и минимальными значениями, или так называемый интерференционный узор. Это вызвано интерференцией волн вероятности, которые проходят через обе прорези. Но следуя за Эйнштейном в его знаменитом диспуте с Нильсом Бором, мы можем задать вопрос, проводим ли мы опыт с отдельными частицами, с отдельными бакиболами поодиночке. Через какую прорезь проходит отдельная молекула-бакибола? Ведь вполне естественно предположить, что каждая частица должна проходить через ту или иную прорезь. Квантовая физика говорит нам, что этот вопрос не имеет никакого значения. Мы не можем назначить четко определенное положение частице, если не проведем реальный опыт, который позволит нам выяснить, где она находится. Поэтому, пока мы не провели измерения, положение бакиболы, а, следовательно, и прорези, через которую она проходит, лишено всякого смысла.

    Предположим, что мы определили положение частицы. В таком случае мы получили ответ и знаем, где она. Она либо возле одной прорези, либо возле другой. В таком случае ее позиция — это определенно элемент реальности, и мы можем четко сказать, что квантовая физика описывает такую реальность. Интересно то, что точно зная одну характеристику, а именно местоположение частицы, мы лишаемся четкого представления о другой, а именно о той характеристике, которая закодирована в картине интерференции.

    И какова же здесь роль сознания? Квантовая механика говорит нам, что частица до наблюдений находится в суперпозиции прохода через одну прорезь и прохода через другую прорезь. Если у нас есть два регистрационных устройства, по одному за каждой прорезью, то частицу зафиксирует один из них. Однако квантовая механика говорит нам, что измерительное устройство смешивается с позицией наблюдения за частицей, и поэтому не имеет четко определенных классических характеристик, по крайней мере в принципе. Следовательно, как говорит американский лауреат Нобелевской премии венгерского происхождения Юджин Вигнер (Eugene Wigner), это такая цепочка, за которой можно следить, пока исследователь не зафиксирует результат. Если мы согласимся с этим доводом, то получается, что реальность определяется сознанием.

    Но так далеко заходить не нужно. Достаточно сделать допущение о том, что квантовая механика просто описывает вероятности возможных результатов измерений. Затем наблюдение превращает потенциальную возможность в реальность, и в нашем случае положение частицы становится количественным параметром, о котором можно говорить с полным основанием. Он реален в опыте Юнга, даже если нет возможности приписать его позиции конкретное значение.

    Мы никогда не преодолеем все барьеры на пути научного познания

    Мартин Рис (Martin Rees)
    Бывший президент Лондонского королевского общества, почетный профессор космологии и астрофизики Кембриджского университета. Выпускник и преподаватель Тринити-колледжа. Автор книги «From Here to Infinity» (Отсюда до бесконечности).

    Существует активно поддерживаемое мнение о том, что наши познания и способность проникновения в суть будут углубляться бесконечно, что все научные проблемы со временем сдадутся под нашим натиском. Но, я думаю, нам следует отказаться от такого оптимизма. Человеческий интеллект может уткнуться в стену, хотя в большинстве научных областей до этого еще очень и очень далеко.

    У космологии явно есть незавершенная работа. Теория Эйнштейна рассматривает пространство и время как нечто гладкое и непрерывное. Но мы знаем, что ни одно вещество нельзя разделить на сколь угодно малые составляющие, потому что со временем мы дойдем до отдельных атомов. Соответственно, пространство само по себе это гранулярная и «квантованная» структура, но в масштабе, который в триллионы и триллионы раз меньше. У нас нет единого понимания основы, или крайнего нижнего уровня материального мира.

    Такая теория привнесла бы большие взрывы и мультивселенные в сферу скрупулезной и точной науки. Но она не станет сигналом об окончании исследований и открытий. Она окажется неактуальной и несущественной для 99 процентов ученых, которые не занимаются физикой элементарных частиц и космологией.

    Например, наши знания о диете и об уходе за детьми пока настолько скудны, что рекомендации специалистов меняются из года в год. Это может показаться несообразным примером на фоне той уверенности, с которой мы ведем диспуты о галактиках и об элементарных частицах. Но эти сложные проблемы сдерживают и ставят в тупик биологов, и они обескураживают их гораздо больше, чем проблемы большого и элементарно малого.

    Области науки иногда сравнивают с разными этажами высокого здания. Физика элементарных частиц находится на первом этаже, затем идет вся остальная физика, потом химия и так далее, вплоть до физиологии (а экономисты сидят в пентхаусе). Есть и соответствующая иерархия сложности: атомы, молекулы, клетки, организмы и так далее. Такая метафорическая система в определенном смысле полезна. Она показывает, как каждая отрасль знания развивается отдельно от других отраслей. Но в одном очень важном отношении это плохая аналогия: непрочный фундамент в здании подвергает опасности находящиеся выше этажи. Но науки на этажах повыше, которые занимаются сложными системами, не подвергаются опасности из-за шаткого основания, как само здание.

    У каждой отрасли знания есть свои собственные конкретные теории и толкования. Даже если бы у нас имелся суперкомпьютер, способный решить уравнение Шредингера для квадрильонов атомов, его производительность не дала бы нам того научного понимания, к которому стремится основная масса ученых.

    Это можно сказать не только о науках, которые занимаются по-настоящему сложными вещами, особенно если это живые вещи, но и о тех, которые изучают более земные и банальные явления. Например, математику, пытающемуся понять, почему текут краны или почему разрушается волна, все равно, что формула воды Н2О. К жидкости он относится как к сплошной массе. Ему нужны иные понятия, такие как вязкость и турбулентность.

    Почти все ученые являются «упрощенцами» в том плане, что они думают, будто все, даже самые сложные вещи и явления, подчиняются основным физическим уравнениям. Но даже если бы у нас был гиперкомпьютер, способный решить уравнение Шредингера для огромного множества атомов в (например) разрушающихся у берега волнах, перелетных птицах и тропических лесах, объяснение на атомарном уровне не даст нам того знания, к которому мы стремимся. Мозг это совокупность клеток, а картина это совокупность химического пигмента. Но в обоих случаях нам интересны их закономерности и структура, то есть сложности иного порядка.

    Люди не очень сильно изменились с тех пор, как наши далекие предки бродили по африканской саванне. Наш мозг развивался постепенно, эволюционируя в рамках человеческой среды, в человеческом измерении. Поэтому поистине необыкновенным является то обстоятельство, что мы разбираемся в явлениях, которые приводят в смущение наше житейское чутье и интуицию, таких как крошечные атомы, из которых мы состоим, и огромный космос, который нас окружает.

    Тем не менее — и здесь я ставлю себя под удар — возможно, что некоторые аспекты действительности изначально недоступны нашему пониманию и что для их понимания необходим некий сверхчеловеческий разум. Ведь не принадлежащие к человеческому роду приматы не в состоянии усвоить эвклидову геометрию.

    Кто-то может оспорить данное утверждение, указав на то, что не существует пределов вещам, которые поддаются вычислению. Но поддаваться вычислению это не то же самое, что быть концептуально осознаваемым. Вот банальный пример. Любой, кто изучал декартову геометрию, легко может представить себе простую фигуру — линию или круг, когда у него есть для этого соответствующая формула. Но ни один человек, получивший алгоритм (простой, на первый взгляд) для составления множества Мандельброта, не сможет представить себе все его поразительные тонкости и черты, хотя компьютер способен элементарно рассчитать его шаблон.

    Для нас бы слишком эгоистично считать, что человеческий разум в состоянии понять науку во всей ее полноте, с правильными представлениями обо всех аспектах действительности. Можно поспорить о том, кому принадлежит будущее — органической постчеловеческой расе или разумным машинам. Но в любом случае, им придется еще очень многое изучить, открыть и исследовать.

    Информационная перегрузка

    Джей Розен (Jay Rosen)
    Адъюнкт-профессор журналистики, Нью-Йоркский университет.

    Мы должны отказаться от идеи, носящей название «информационная перегрузка». Она уже не имеет никакого смысла и бесполезна.

    Об этом хорошо написал исследователь интернета Клэй Ширки (Clay Shirky): «Нет такой вещи как информационная перегрузка. Есть лишь сбой фильтра». Если у вас плохие фильтры, вам приходится очень за многим следить, и времени вам на это не хватает. Не эти тенденции приводят в действие технологии, а условия жизни. Фильтры в цифровом мире не удаляют не прошедшее через них, они просто не отбирают эти материалы. Не отобранные материалы остаются в ожидании того, кто еще их отфильтрует. Умные фильтры, которые как раз нам и нужны, бывают трех видов.

    1. Умный человек, который пропускает через себя большой объем информации, а потом рассказывает вам то, что вы должны знать. В древности это называлось «редактор». Первая страница New York Times до сих пор работает таким образом.

    2. Алгоритм, просеивающий то, что отобрали другие умные люди. Он ранжирует материалы, а потом предъявляет вам верхние результаты. Так работает Google — более или менее.

    3. Система машинного обучения, которая со временем узнает ваши интересы и предпочтения и фильтрует для вас весь мир, делая это все умнее и умнее. Такие системы использует Amazon.

    Начало учебного года во Франции
    Вот лучшее определение информации, которое мне известно: информация — это мера уменьшенной неопределенности. Определение простое, но эта простота обманчива. Чтобы получить информацию, нам нужны две вещи: неопределенность, которая важна для нас (завтра у нас пикник, но не пойдет ли дождь?), и нечто, что эту неопределенность снимает (прогноз погоды). Но некоторые прогнозы создают новую неопределенность, разрешать которую приходится позднее.

    Представим себе, что из новостей мы узнали о том, как Агентство национальной безопасности «взломало» кодировку в интернете. Вот это информация! Она снижает неопределенность относительно того, насколько далеко готово пойти американское правительство. (Да, до конца!) Но та же самая новость усиливает неопределенность относительно того, останется ли единый интернет, заставляя нас искать новую информацию, когда эта общая картина становится понятнее. Так что информация — это мера уменьшенной неопределенности и в то же время неопределенности созданной. Наверное, именно это мы имеем в виду, когда говорим: «Что ж, это породило больше вопросов, чем дало ответов».

    Сбой фильтра происходит не из-за слишком большого объема информации, а от избытка входящего «материала», который не только не снижает существующую неопределенность, но и не порождает никаких важных для нас вопросов. Возможное решение проблемы — в сочетании трех типов фильтров: умных людей, которые сделают это за нас, умных алгоритмов с их выбором и умных систем, которые обучаются, общаясь с нами как люди. Но в этот момент кто-то может воскликнуть: а как же насчет интуитивной прозорливости? Что ж, справедливое замечание. Нам нужны фильтры, которые прислушиваются к нашим потребностям, но также пропускают то, чего мы никак не можем потребовать, потому что ничего об этом пока не знаем. Фильтры дают сбой, когда слишком хорошо нас знают и когда знают нас недостаточно.


    Та самая «Вселенная»

    Аманда Гефтер (Amanda Gefter)
    Консультант журнала New Scientist, основатель и редактор блога CultureLab.

    У физиков имеется проверенная временем традиция — смеяться прямо в лицо нашей интуиции. Относительность Эйнштейна заставила нас отказаться от представлений об абсолютном пространстве и времени, а квантовая механика вынудила забыть многие другие идеи и теории. И тем не менее одна идея держится упорно и непоколебимо: это представление о Вселенной.

    Конечно, картина Вселенной со временем менялась и развивалась — представления об исторической динамике, о ее происхождении и расширении. Нашу Вселенную даже низвели до статуса одной из многих в бесконечном множестве мультивселенной, которая навсегда разделена горизонтами событий. И тем не менее мы отчаянно цепляемся за нашу веру в то, что будучи обитателями Млечного пути, все мы живем в едином пространственно-временном континууме, в нашем общем уголке космоса, в нашей Вселенной.

    Но в последние годы концепция единого и общего для нас пространства-времени породила парадокс в физике. Первым признаком того, что здесь чего-то не хватает, стала знаковая работа Стивена Хокинга (Stephen Hawking), написанная в 1970-х годах, которая показала, что черные дыры расходятся из центра и испаряются, исчезая из Вселенной и предположительно забирая с собой некую квантовую информацию. А квантовая механика между тем построена на постулате, гласящем, что информация не может быть утрачена.

    Здесь-то и возникает головоломка. Когда информация попадает в черную дыру, она не может выкарабкаться обратно, если не будет перемещаться быстрее скорости света, нарушая принцип относительности. Следовательно, единственный способ ее сохранения — это никогда не попадать в черную дыру. С точки зрения находящегося за пределами черной дыры ускоренного наблюдателя, сделать это нетрудно. Благодаря релятивистскому эффекту, с его выгодной позиции кажется, что информация растягивается и замедляется, приближаясь к черной дыре, а затем сгорает дотла в жаре хокинговского излучения еще до пересечения горизонта. Но это совсем другая история, так как инертный наблюдатель, который погружается в черную дыру, проходит горизонт и не замечает никаких странных релятивистских эффектов хокинговского излучения, благодаря эйнштейновскому принципу эквивалентности. С его точки зрения информации лучше попасть в черную дыру, иначе относительность окажется в беде. Иными словами, чтобы соблюсти все законы физики, один экземпляр бита информации должен остаться вне черной дыры, а его клон — попасть внутрь. Ах да, тут есть одна закавыка — квантовая механика не допускает клонирования.

    Леонард Сасскинд (Leonard Susskind) со временем решил этот информационный парадокс, заявив, что мы ограничиваем свое описание мира либо пространственно-временным регионом за пределами горизонта черной дыры, либо внутренним пространством черной дыры. Каждое описание само по себе является логичным и последовательным. И лишь когда мы начинаем говорить и о том, и о другом, мы нарушаем законы физики. Такая «комплементарность», или взаимодополняемость горизонта, говорит нам о том, что внутренняя часть черной дыры и пространство-время вне ее не являются неотъемлемой частью единой Вселенной. Есть две вселенных, но они в разных жизнях.

    Комплементарность горизонта до прошлого года сдерживала парадоксальность ситуации, но вот физическое сообщество встряхнула новая головоломка, которая еще больше его измучила. Это так называемый парадокс исчезновения информации в черной дыре. У нас два наблюдателя оказались в ситуации, когда они дают противоречащие друг другу квантовые описания единого бита информации. Но сейчас противоречие возникает, когда оба наблюдателя находятся еще вне горизонта, до того, как инертный наблюдатель попадет внутрь черной дыры. Иными словами, оно возникает, когда оба находятся предположительно в одной и той же вселенной.

    Физики начинают думать, что лучшее решение парадокса исчезновения информации состоит в том, чтобы принять тезис «сильной комплементарности», то есть ограничить наши описания не просто пространственно-временными регионами, разделенными горизонтом событий, но и системами координат индивидуальных наблюдателей, где бы они ни находились. Как будто у каждого наблюдателя есть своя собственная вселенная.

    Обычная комплементарность горизонта уже ослабила возможность существования мультивселенной. Если мы нарушаем законы физики, описывая два разделенных горизонтом региона, то представьте себе, что будет, когда мы станем описывать бесконечные регионы, разделенные бесконечными горизонтами! Да, сильная комплементарность подрывает возможность существования единой, общей для всех Вселенной. На первый взгляд, возникает впечатление, что она создает собственную мультивселенную. Но она не создает. Да, есть множество наблюдателей, да, вселенная у одного наблюдателя ничуть не хуже, чем у другого. Но если мы хотим соблюдать законы физики, мы можем говорить только об одной вселенной одновременно. А это означает, что одновременно существует только одна Вселенная. Такой вот космический солипсизм.

    Отправить Вселенную досрочно в отставку было бы весьма радикальным шагом, так что лучше отыскать нечто более симпатичное в плане научного прогресса. Я думаю, это можно сделать. Для начала, Вселенная может пролить свет на низкое квадрупольное совпадение или на то обстоятельство, что космическое сверхвысокочастотное фоновое излучение не демонстрирует колебаний температуры более 60 градусов, захватывая размер пространства как раз с наблюдаемую нами часть Вселенной. Как будто реальность резко останавливается на краю системы координат наблюдателя. 

    Рентгеновский снимок центра Туманности Андромеды, на котором отмечены черные дыры
    Еще важнее другое. Мы можем получить лучшее концептуальное представление о квантовой механике. Квантовая механика не поддается пониманию, потому что позволяет вещам зависать в суперпозиции взаимоисключающих состояний, как когда фотон проходит и через эту, и через ту прорезь, или когда кошка одновременно и жива, и мертва. Это противоречит нашей бинарной логике, и это настоящее издевательство над законом исключенного третьего. Еще хуже то, что когда мы действительно что-то наблюдаем, суперпозиция исчезает, и каким-то магическим образом возникает единая реальность.

    Но в свете отказа от идеи Вселенной все это меньше походит на магию. В конце концов, суперпозиции это на самом деле совмещения систем координат. В любой единой системе координат жизненно важные органы животного четко определены. Кошка будет одновременно жива и мертва лишь в том случае, когда мы попытаемся собрать воедино несколько систем координат на основе ложного допущения о том, что они являются частью одной и той же вселенной.

    И наконец, отказ от концепции вселенной может дать нам некоторые руководящие указания, пока физики продвигаются вперед со своей программой квантовой гравитации. Например, если у каждого наблюдателя есть своя собственная вселенная, то у каждого наблюдателя есть и свое собственное гильбертово пространство, свой собственный космический горизонт и своя собственная версия голографии. В таком случае нам от теории квантовой гравитации нужен набор условий постоянства и последовательности, который может связать друг с другом то, что измеряют разные наблюдатели.

    Отрегулировать нашу интуицию и приспособиться к открытым физикой странным и незнакомым истинам всегда непросто. Но, возможно, мы подходим к представлению о том, что существует моя вселенная и существует твоя вселенная, но такой вещи как единая Вселенная для всех нет.

    Обитаемая зона

    Димитар Сасселов (Dimitar D. Sasselov)
    Профессор, преподаватель астрономии, Гарвардский университет. Директор инициативы «Происхождение жизни». Автор книги «The Life of Super-Earths» (Жизнь супер-Земель)

    Обитаемая зона определяется расстоянием от звезды, на котором схожие с Землей планеты имеют такую температуру на своей поверхности, что вода там может находиться в жидком состоянии. В нашей Солнечной системе эта зона находится между орбитами Венеры и Земли и простирается вплоть до Марса. Ее границы приблизительны, так как они применяются к различным планетным системам, и иногда данное понятие используется в более широком плане, например, в отношении галактик. Идея обитаемой зоны имеет долгую и почтенную историю, поскольку поиски инопланетной жизни ведутся уже давно, а недавно эта концепция способствовала замечательному успеху миссии НАСА по поиску планет за пределами Солнечной системы при помощи телескопа «Кеплер». Однако после выхода этого телескопа из строя данная научная идея может получить отставку.

    Такое простое определение обитаемой зоны привлекает тем, что его можно использовать в статистическом анализе пригодных для жизни планет, поскольку такой анализ определяется несколькими параметрами, которые легко измерить. Оно также вполне понятно: не очень жарко, не очень холодно — как раз то, что надо. Простая и понятная статистика очень важна для анализа распространенности и распределения небольших планет типа Земли в нашей Галактике, и космический телескоп «Кеплер» явно преуспел в этом деле. Если наша цель теперь заключается в поисках жизни, то хорошо, что мы знаем, куда нам следует направиться — к пригодным для жизни планетам вне Солнечной системы. Таким образом, слово «обитаемая» в терминологическом словосочетании «обитаемая зона» является неправильным или как минимум огромным преувеличением. Даже в нашей Солнечной системе мы предполагаем наличие внеземной жизни за пределами такой зоны, например, на спутниках Юпитера и Сатурна. Сегодня нам нужно общее представление о том, что делает среду пригодной для обитания, то есть позволяющей жизни возникнуть и сохраниться в геологических временных рамках, будь то планета или ее спутник. Но большой вопрос состоит в том, как узнать, что делает планету живой, и как распознать живую планету при помощи наших телескопов.

    Прошедший год стал историческим в плане поисков внеземной жизни. Благодаря «Кеплеру» и другим инопланетным исследованиям мы теперь знаем: похожих на Землю планет такое великое множество, что многие аналоги нашей родной планеты должны находиться где-то по соседству в пределах нашей Галактики. Поэтому их можно искать при помощи дистанционного зондирования с применением существующей техники и создаваемых телескопов. Поиски жизни должны начаться вот-вот, однако нам надо лучше понять, что именно следует искать.

    Отказавшись от понятия обитаемой зоны, мы должны вернуться к ее первоначальному названию из середины 20-го века — «пояс жидкой воды». Это очень важный регион для богатой геохимии твердых планет. Живые планеты среди них покажутся нам родным домом.


    продолжение статьи..

    Категория: в Мире | Добавил: sci-ru (04.02.2014)
    Просмотров: 751 | Рейтинг: 0.0/0
    Всего комментариев: 0
    Имя *:
    Email *:
    Код *:

    Copyright MyCorp © 2024
    Бесплатный хостинг uCoz